Different stromal cell lines support lineage-selective differentiation of the multipotential bone marrow stem cell clone LyD9

نویسندگان

  • K H Lee
  • T Kinashi
  • K Tohyama
  • K Tashiro
  • N Funato
  • K Hama
  • T Honjo
چکیده

An interleukin 3-dependent multipotential stem cell clone, LyD9, has been shown to generate mature B lymphocytes, macrophages, and neutrophils by coculture with primary bone marrow stromal cells. We report here that coculture with the cloned stromal cell lines PA6 and ST2 can support differentiation of LyD9 cells predominantly into granulocyte/macrophage colony-stimulating factor (GM-CSF)- and granulocyte (G)-CSF-responsive cells, respectively. However, these stromal cell lines were unable to support lymphopoiesis of LyD9 cells. The GM-CSF-dependent line, L-GM, which was derived from LyD9 cells cocultured with PA6 stromal cells, could differentiate into macrophages and granulocytes in the presence of GM-CSF. The L-GM line can further differentiate predominantly into neutrophils by coculture with ST2 stromal cells. The G-CSF-dependent line, L-G, which was derived from LyD9 cells cocultured with ST2 stromal cells, differentiated into neutrophils in response to G-CSF. Although the stromal cell-supported differentiation of LyD9 cells required the direct contact between LyD9 and stromal cells, a small fraction of LyD9 cells that were pretreated with 5-azacytidine could differentiate into neutrophils and macrophages without direct contact with stromal cells. These results indicate that different stromal cell lines support lineage-selective differentiation of the LyD9 stem cell and that 5-azacytidine treatment can bypass the requirement of direct contact with stromal cells, albeit with a lower frequency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Premature expression of the macrophage colony-stimulating factor receptor on a multipotential stem cell line does not alter differentiation lineages controlled by stromal cells used for coculture

We are interested to know whether expression of a lineage-specific growth factor receptor is deterministic to lineage commitment during hematopoiesis. For this purpose, we introduced the human c-fms gene into the multipotential stem cell clone LyD9 and two myeloid progenitor clones, L-GM3 and L-G3, cells that differentiate in response to granulocyte/macrophage colony-stimulating factor (GM-CSF)...

متن کامل

Bone marrow stromal cells and their application in neural injuries

Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...

متن کامل

Blastema from rabbit ear contains progenitor cells comparable to marrow derived mesenchymal stem cells

Rabbits have the capacity to regenerate holes in their ears by forming a blastema, a tissue that is made up of a group of undifferentiated cells. The purpose of the present study was to isolate and characterize blastema progenitor cells and compare them with marrow mesenchymal stem cells (MSCs). Five New Zealand white male rabbits were used in the present study. A 2-mm hole was created in the a...

متن کامل

Rat bone marrow stem cells isolation and culture as a bone formative experimental system.

Bone marrow mesenchymal cells have been identified as a source of pluripotent stem cells with multipotential potential and differentiation in to the different cells types such as are osteoblast, chondroblast, adipoblast. In this research we describe pioneering experiment of tissue engineering in Bosnia and Herzegovina, of the isolation and differentiation rat bone marrow stromal cells in to the...

متن کامل

Review Paper: Embryonic Stem Cell and Osteogenic Differentiation

Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 173  شماره 

صفحات  -

تاریخ انتشار 1991